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Abstract

This note details the basic equations on which
DICE, the most standard IAM, is based, and
explore how changing them can imply highly
different results. Relying on existing research,
we especially highlight how CBA-TAM can

recommand strong mitigation policies.

1 The DICE model

The Dynamic Integrated Climate-Economy
(DICE) model is a cornerstone in climate eco-
nomics. It has been developed by William
Nordhaus for the first time in 1992 [30], and
has been lastly updated in 2023 [5]] DICE
adopts a top-down approach to model the
macroeconomic impact of climate change and
the associated policies from a long-term per-
spective. As a Ramsey-Cass-Koopmans model
of economic growth, it seeks to find the opti-
mal (thus normative) transition path built on a
cost-benefits analysis relying on deterministic,
dynamic and recursive computations. Aggre-
gated at the world level, it doesn’t leave place
for distributional issues, whether of income or
climate-related cost. The hypotheses under-
pinning DICE are very standard: a unisectoral
model without any explicit energy sector and
a supply-based output. The production is de-
fined as a Cobb-Douglas function, such that
capital K and labor L are substitutable.
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Every individual is considered working (Pop-
ulation = Labor). Labor and Total Factor Pro-

'For the sake of consistency with the presented pa-
pers, the following technical aspects of DICE rely on
the 2013 version [29)].

ductivity (TFP, noted A) are exogenous and
their growth rates decline. Capital is endoge-
nously calculated through its conventional law
of motion and a neoclassical closure (saving-
investment equality assumption) happens at
each time period.

Ko =(1— 0K, +1, 2)

Individuals are defined under a single (so-
called) representative rational agent. DICE
sets as an optimal control method the maximi-
sation of intertemporal utility with a regular
discounted total utilititarianism criterion. The
utility function is a standard Constant Rela-
tive Risk Aversion (CRRA) function depending
only on consumption per capita. Denoting W
the intertemporal welfare function being max-
imised, we have:
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As a Cost-Benefits Analysis Integrated As-
sessment Model (CBA-IAM), DICE represents
interactions between climate change and eco-
nomic modules. From carbon emissions, a car-
bon cycle model generates atmospheric carbon
concentration. This concentration is trans-
lated into a temperature change which impacts
the economy (through a damage function).
Mitigation can be implemented at a certain
cost to reduce emissions, depending on global
aggregate emissions and emissions abatement.
There is neither technical change nor adjust-
ment cost, and mitigation cannot bear a poten-
tial economic benefit. Damages and mitigation
can affect welfare, growth, and the emissions
that are generated from economic production.

In DICE-2013R, COy emissions from pro-
duction (through the carbon intensity of out-



put o; and the mitigation rate p;) and from
land-use change are taken into account. The
carbon cycle is modeled through three reser-
voirs: the atmosphere (M), the biosphere and
upper layers of the ocean (M*") and the deep
ocean (M'). The M? variables measure the
carbon concentration, and carbon circulation
is allowed between reservoirs. The global mean
surface temperature increase T; depends on the
radiative forcing RF,; (given by the Arrhenius
formula), the equilibrium climate sensitivity S
(i.e. the long-term temperature increase after
having reached a doubling of the atmospheric
COs concentration), the speed of adjustment
to the new temperature (£;), Planck’s feedback
(&,T;_1) and ocean’s temperature (7°.)
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The damage function is assumed to be a poly-
nomial of degree 2 in temperature increase,
such that:
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The temperature leading the reduced-form
damage function seeks to represent a wider set
of climatic variables (sea-level rise, precipita-
tions, etc.).

The abatement costs are represented with a
monotonous rising function, dependent on the
emission control rate pu;, which translates as
the ratio between the marginal costs of abate-
ment over the price of the backstop technology.

(6)

DICE supposes that a; declines exogenously
with time, which implies that emission reduc-
tion cost is independent of previous emission
levels.

Eventually, the output net of climatic dam-
ages and abatement costs is written:
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As an optimisation model, DICE allows to
compute the Social Cost of Carbon (SCC), de-
fined as the present value of the damage stream

resulting from a marginal unit of carbon emis-
sions:
SCCy = oE, \ ac, (8)

The SCC is used to determine the optimal
carbon price and inform the optimal mitiga-
tion policy: for instance, the US Environmen-
tal Protection Agency uses the DICE model to
set their own value of the SCC [3].

Although it allows potential decarbonisation
levers to be explicitly represented through styl-
ized facts, much criticism arised during the
last decades, mostly because, under Nordhaus’
assumptions, DICE’s lack of realism leads to
very moderate recommandations about the
economic benefits of the transition, undermin-
ing ambitious climate policies.

In his last paper, the optimal cost-benefit
policy corresponds to a Social Cost of Carbon
worth only 50 2019USD/tCO, for 2020, lead-
ing to a 2.6 °C increase in 2100 [5], while a
contemporary study gives a value twenty-fold
higher, of 1,056 2024USD/tCO, [8]. Beyond
this huge gap, an overly simplistic representa-
tion of the climate-economy relationship is at
work in DICE, to which can be added the lack
of moral and ethical considerations, notably on
the distribution of costs and benefits of climate
policies. Many authors have thus suggested
to include new mechanisms (differentiated con-
sumption to obtain relative price changes [42],
stochasticity and uncertainty [20], 25], inequal-
ities [I5]) or to challenge some hypotheses over
parameters (the most famous being the value
of the discount rate p discuted in the Stern Re-
view [40]) in order to demonstrate how DICE
could provide optimal trajectories that are ac-
tually compatible with the Paris Agreement
objectives. In the following, we explore how
the papers of Dietz and Stern (2015), Moore
and Diaz (2015) and Grubb et al. (2020)
[19, 21], 27] question the DICE model and re-
veal some of its weaknesses.

o (i)

2 Extending DICE

A general way of posing their research ques-
tion would be: "How relaxing unrealistic
assumptions can affect DICE’s optimal cli-
mate policy?". While Dietz and Stern [19]



and Moore and Diaz [27] focus on better de-
scribing the effects of temperature increase on
economic growth, Grubb et al. [21] rather em-
phasize the importance of taking into account
the dynamic interdependencies that underpins
the trajectories of the emissions abatement
costs, for instance by considering the com-
bination of inertia and technology learning.
Dietz and Stern especially shed a light on the
interaction of a new functional form for the
damage function, tipping points, uncertain-
ties and an endogenized growth mechanism,
while Moore and Diaz explored the combina-
tion of regionalisation and endogenous growth.

To better account for welfare loss, Dietz and
Stern built on the wise work of Martin Weitz-
man (1942 - 2019) [48] and defined a reactive
damage function anchored in order to take into
account tipping points (eg. at 4+ 12 °C, the out-
put is reduced by 99%).
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Weitzman insisted on the structural un-
certainties upon which CBA-IAM are based,
whether they are about the tail fatness of the
probability density function of the diswelfare
caused by climate change, or about the poten-
tial brutal changes that cannot be captured by
models that are based on smooth functions.
His views were quite aligned with Pindyck’s
[35] about the (too) wide range of possible pol-
icy recommandations relying on unkownable
assumptions. Dietz and Stern then chose to
leave DICE’s deterministic framework by re-
placing the fixed value of equilibrium climate
sensitivity (S = 3 °C) by a probability density
function with a fat right-hand tail (i.e posi-
tively skewed, with a significantly higher prob-
ability of extreme events compared to a normal
distribution), such that its mean value pg and
its standard deviation og are {ug, os} = {2.9,
1.4} °C. With respect to the equation , S is
now replaced by f(S) such that:

f(S) = W (11)

Dietz and Stern also introduced endoge-
nous growth a la Romer, i.e. accumula-

tion of knowledge (through learning-by-doing)
that spillovers over all firms, with damages,
throughout two versions of the model.

The first one adds explicit damages on cap-
ital stocks, and knowledge spillovers are incor-
porated wvia capital into the production func-
tion (with a productivity factor K#).
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The second one instead endogenize TFP
(with a slower depreciation than capital), such
that the law of motion for capital is the same
as in DICE 2013 , but the TFP and the

production function are:
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In this model, the term ~,1;* allows a TFP
growth through knowledge spillovers coming
from capital investment. Contrary to the first
version, the knowledge thus does not depreci-
ate as fast as the capital stock and its loss is
captured by the damages on TFP.

Let us point out that damages are parti-
tioned between output Y and i,i € {A, K}
such that:

Di = \'D,, X\ €][0;1] (18)
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Having endogenous drivers of growth that
can be affected by climate change allows to
depict what is called a "growth-effect", a dy-
namic relationship between GDP growth rates
and damages such that the output possibilities
are permanently reduced. It traduces more re-
alistic assumptions about climate impacts, eg.
on capital stock (such as infrastructure or their
productivity) from extreme events, on TFP be-
cause past investments are not as productive as
they would have been in a cooler climate, or on
learning-by-searching because of the allocation
of resources to adapt to climate change instead
of investing in R&D.

Moore and Diaz also represent this growth
effect by damages over TFP growth or cap-
ital depreciation. Rather than an explicit



quadratic function, they use temperature
shocks which a persistency that exponentially
decays over time, as an adaptation mechanism.
The temperature increase T} is then replaced
by an effective temperature ET;:

t
ET,= Y (T; ~ Tp)e Y

1=1850

(20)

They model a differentiated effect on poor
and rich countries (on growth rates and eco-
nomic output), considering that the former will
suffer more from warming. They distinguish
two mechanisms for an explanation, that have
opposite implications. The first one justifies
that the damages are a function of the temper-
ature, because poorer countries tend to be hot-
ter than richer ones, therefore a warming might
lead to more frequent damaging temperature.
The second one is a resilience mechanism, be-
cause poorer countries rely more on climate-
exposed sectors (eg. agriculture). The dam-
ages are then a function of GDP per capita.

TFP growth endogenization is similar to
that of Dietz and Stern. For a region j and
an exogenous annual TFP growth rate rrpp, ,:

A?/[J&D = (1 + TTFPN — ’YOjETt)AtA%t_l (21)

with 7p; the sensitivity of TFP growth to
either temperature or resilience mechanism.

When capital depreciation is endogenized, it
is based on values for total factor productivity,
labor, investment, baseline growth rate, tem-
perature, and the previous year’s output and
capital stock. Its value derives from the equal-
ity between the net output function Vx(;ritten
as§%V=&dﬂ—@mw4+HH)Lﬁ“
and its expression implying its growth rate,
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It can been shown that a concave quadratic
function fits the relationship between temper-
ature and depreciation.

Leaving to others the damage question,
Grubb et al. highlight the poor representa-
tion of abatement costs in DICE compared

to the last empirical evidence. To implement
dynamic realism, they argue for the impor-
tance of induced innovation, inertia and path-
dependency as drivers of the technical change
of energy systems and their associated costs.
Nordhaus did try to include induced innova-
tion in the R&DICE model but found that it
would led to more emissions than exogenous in-
novation with substitution to renewables [31].

The authors challenge this result by remind-
ing that innovation has both an exogenous part
(through public R&D and spillover) and an en-
dogenous one (induced by prices, market de-
ployment or demand). They also insist on the
major role of path-dependency and inertia in
the adoption of low-carbon technologies, which
if not taken into account, can lead to a lock-
in in high-carbon infrastructures (and more
broadly a technological lock-in during the tran-
sition. For example, replacing coal with gas
will ask heavy investment in new infrastruc-
tures and R&D: society thus have to be sure
of the direction they give to the transition [2]).

Indeed, the present situation highly depends
on past choices through locking mechanisms
that can come from technical factors (such as
increased performance by spillovers, learning-
by-using and learning-by-doing, network exter-
nalities or technological interrelatedness), but
also behavioral (eg. self-reinforcing habits, so-
cial norms or sunk-costs fallacy) and institu-
tional [39]. Moreover, because the lifetime
of capital stock is non null, society inherits
a given set of technologies, industries, insti-
tutions and social norms that might maintain
the status quo through the mechanisms evoked
beforehand if no directed technical change is
implemented to break the inertia [I].

To reflect a transitional element, Grubb
et al. [2I] suggests considering the rate of
change of abatement fi; and a characteristic
transition timescale £ in the abatement cost.
The function is then composed of an inertial
term (how much efforts are needed to switch
from path-dependency) and a rigid term (how
much are absolute abatement costs) whose pro-
portion is determined by a pliability parameter
p. No pliability corresponds to a case with-
out inertia whereas full pliability implies total
path-dependency.
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Through their work, each of the authors sug-
gest an extension of the standard DICE frame-
work: temperature is challenged by Dietz
and Stern and reinterpreted by Moore and
Diaz , damages are revised @D and in-
tegrated in the growth mechanism (12)), (5],
(1), ([22), and abatement costs (0]) are rede-

fined to include inertia and path-dependency
. Now that a new framework has been es-
tablished, the need arises to put numbers in it,
which means making decision on the data to
use to calibrate the parameters and the uncer-
tainties that come with it.

3 Dealing with modeling:
choices and wuncertain-
ties

Parameters are estimated more or less roughly
depending on data availability, econometrics
tool, ethical consideration, modeling choices
and true knowledge of the world. In DICE,
the choices made seem to converge toward a
poor estimate of the damages and how they
matter for future generations.

First, the damage function’s parameters
have been calibrated on Tol’s (2009) estimates
[44], multiplied by 1.25 to virtually account for
non-monetized impacts. It is worth noting that
Tol’s study has been found to be deeply wrong:
he showed that a 2.5 °C increase in temper-
ature would lead to a loss of 0.7% in GDP,
then published a correction five years later [45]
which also happened to be deeply criticized
(see for instance Bob Ward’s response on the
Journal of Economic Perspectives’ website).

Then, the aversion to intertemporal inequal-
ity is quite low, n = 1.45, and the pure rate
of time preference quite high: p = 1.5% /year
(which translates as follow: the value of a life in
50 years equals 50% of what it is worth today).
It shall be highlighted that Weitzman chose
prescriptively to set p = 0, following Ramsey,
Pigou or Solow, and that Stern in its review
[40] uses p = 0.1% to account for a small prob-
ability of human extinction. In the presented

papers however, the authors do not challenge
the discount rate for the sake of comparison.

Many econometric studies intend to assess
climate change impacts on economic growth
and the economy, whether on productive sec-
tors [10), [14] such as agriculture [38] or through
a loss of labor productivity due to hotter tem-
perature, or on welfare loss (eg. health degra-
dation) [16]. However, they often rely on a
+1 °C increase in temperature (or a normal-
ized increase of 1 °C), studying short-run im-
pacts on GDP. Because econometrics can only
look in the past, and physics cannot provide a
perfect forecast of climate damages and the re-
lated GDP growth rate sensitivity, the damage
functional form and its parametrisation neces-
sarily lie in radical uncertainty: only "quasi'
data-points can be used for calibration.

From then, different modeling choices are
made. Moore and Diaz chose to calibrate their
regional growth-rate sensitivity to temperature
Jo; on Dell et al. [14], from time lags and re-
gression coefficient on temperature over GDP
growth (and corrected by the feedback caused
by endogenous capital calculation). They had
to assume a zero long-run effect through an
"optimistic adaptation" hypothesis: they set
quite arbitrarily the rate of adaptation a at
10%/year such that 95% of the impact of a
temperature shock is lost after 30 years .
To complete their exploration, they perform
sensitivity analyses on the adaptation rate and
the equilibrium climate sensitivity to assess the
robustness of their results.

On the contrary, Dietz and Stern follow
a normative approach. Whereas in DICE,
+18 °C increase is needed in order to reach
a loss of 50% of the output, they parametrize
1; such that 50% of the GDP remains either at
+6 °C or +4 °C. They still use empirical stud-
ies to define the \' parameters in the damages
share , with A¥ = 0.3 and A\ = 0.05, re-
spectively based on Nordhaus and Boyer [32]
and Moyer et al. [28], though high uncertain-
ties remain on these values. To explicitly com-
pare their extended version to Nordhaus’ one,
they use most of the same parameters (labor,
abatement cost, savings rate, etc.) and cali-
brate the spillover function ~; I, such that
the output without climate change replicates
DICE’s results.



Finally, knowing the high uncertainty falling
on the equilibrium climate sensitivity, Dietz
and Stern combine a probability distribution
calibrated on the IPCC AR5 [43], using a log-
logistic form (11)) as a "middle of the road" as-
sumption. Even tough they go beyond the de-
terministic framework, they do not implement
learning about climate sensitivity from obser-
vation, it is only taken as given before the first
period starts. Still, they perform a complete
investigation by performing a sensitivity anal-
ysis on the ECS, conscious of the substantial
uncertainty that lies on this parameter.

As for Grubb et al., they have the advantage
to rely on a wide range of recent empirical stud-
ies to calibrate their abatement cost function
(23). For instance, they refer to Bashmakov
et al. [6] for insights on the necessary time to
adapt the energy system in OECD countries
after the 1970s oil shocks (25-33 years), they
identify as a major factor of inertia the 40-
year lifetime of coal plants, and highligh that
carbon lock-in for transport infrastructure can
last for centuries and that market penetration
of new technologies takes time, with a wide
range of time-scales depending on technologies,
sectors, socio-economic factors, etc. Overall,
they deduce that the transition time-scales are
at least 20-40 years for the bulk emitting sys-
tems and choose in consequence to set t = 30
years. For reproducibility, they use the same
parameter 6 as in DICE, and they explore the
sensitivity of the results to the pliability pa-
rameter p, with p € {0;0.5;1}. They justify
these values by the empirical literature, which
suggests that p should be between 0.5 and 1
and use p = 0 to reproduce DICE’s results.

4 Results

The computed scenarios start as soon as 2015
and end between 2100 and 2245. They often
integrate a baseline scenario (without any mit-
igation policy) and an optimal control scenario
of reference, corresponding to DICE’s optimal
policy. Then, they provide new trajectories to
explore their suggested improvements.

Nearly all scenarios show a striking decrease
in COy emissions compared to the reference
scenario allowing some of them to fit the Paris
Agreement objectives. Because of the many

uncertainties around the model, it must be
given more importance to the ordinality of the
results rather than their absolute values.

Still, we can denote than simulated DICE-
like baselines lead to a temperature increase
between 3.5 and 4.5 °C by 2100 and that the
optimal scenario of reference (mitigation poli-
cies with Nordhaus’ parameters) allows for a
~ 3 °C warming. Using the described mech-
anism, Dietz and Stern and Moore and Diaz
succeed in showing how higher damages and
growth-effect strongly impede the economy.
More precisely, cases where 50% of global out-
put is lost at +4°C or +6 °C (and/or combined
with a high S value) reverse the consumption
per capita curve, traducing a collapse in living
standards because of damages on productivity
growth. The scenario with Weitzman damages
and a high climate sensitivity value leads to an
optimal net-zero emissions by 2055 in the TFP
model and 2065 in the K model, and a car-
bon price over 100 2012USD/tCO, in 2025}
It shall be noted than when warming is fast,
the growth effect matters less: as it is a com-
pounded effect over time (a cumulative sum of
small impacts), it becomes more similar to a
level-effect if instantaneous damages are high.

Switching the climate sensitivity to a proba-
bility distribution function narrow the allowed
emissions, as a risk effect mechanism.

When regional heterogeneity is included,
some of the previous results are altered. While
the growth effect is still present, it is less pro-
nounced in rich regions, which are more re-
silient to temperature shocks. However, poor
regions assists to a 40% reduction in GDP
per capita by 2100. Considering a tempera-
ture mechanism, the optimal mitigation im-
plies reaching net zero no later than 2070, a
result robust to changes in the adaptation rate
a (from 0% to 20%) ; but even so, they still
loose 20% in GDP per capita by 2100 com-
pared to a scenario without climate change.

Nonetheless, the major result of Moore and
Diaz reside in the non-robustness of the growth
effect to the mechanisms driving growth-rate
impacts. While the temperature mechanism
leads to reach the Paris Agreement with a high
Social Cost of Carbon, the simulation of a re-

N.B. : the 2024 EU ETS price fluctuate between
60 and 80 eur.2024/tCO4



silience mechanism results in a relaxation of
mitigation in favor of economic growth. In-
deed, it allows to reduce poor countries’ sensi-
tivity to exposed sectors by developing quickly,
which leads to a rise in emissions that can im-
ply a +6 °C warming by 2150 (5 °C by 2100).
Therefore, the true explanation of poor coun-
tries” vulnerability to climate change is crucial
to decide whether to prioritize decarbonization
or resilience through growth.

In a similar way, Grubb et al. reveal
how properly representing temporal interde-
pendence influences the policy recommenda-
tions of IAMs. Depending on pliability, the
net-zero target can be reach after 2120 (stan-
dard DICE recommandation) or as early as
2070 (if there is a full pliability in the energy
system). More than quantitative results, they
show how different can be the temporal dis-
tribution of cost whether inertia of systems
combined with learning is taken into account
or not. With substantial pliability, starting
with high investment sustained at their initial
level for few decades drive the low-carbon in-
novation, overcome inertia and break the path-
dependency upon fossil fuels. Then, costs de-
cline until reaching quickly a low level, along
with a decrease in climate damages compared
to a scenario without inertia (where costs keep
increasing). The authors underline the coher-
ent results they draw compared to more com-
plex hybrid models such as IMACLIM-R [13].

Nevertheless, the authors insist on the fact
that the models, especially top-down ones, un-
derperform in capturing the complexity of the
energy transition and its mechanisms (such as
induced innovation) and plead for a diversifi-
cation of reference paths as there is no unique,
least-cost pathway for the global energy sys-
tem, because of the diversity of dynamic link-
ages across sectors and technologies. More
than a single global carbon price should be
implemented to induce the energy transition,
and it should especially be complemented by
targeted instruments to induce mitigation in
long-lived infrastructure.

5 Discussion

In the TAM community is admitted the in-
evitable trade-off between interpretation of

transparent insights and complexity that re-
flects reality. DICE stands in the first category,
and its simplicity allows to play with the mech-
anisms that underpin the climate-economy re-
lationship. Nonetheless, it necessarily makes it
very sensitive to many hypotheses (almost all
of them actually). Welfare function, aversion
to intertemporal inequality, amount of dam-
ages, representation of costs, time discounting,
the framework of utilititarianism (for a reflec-
tion and proposal for other criteria, see for in-
stance [4], O, [I8, [49]), etc.

One can argue that a more rigorous account-
ing of the effects of climate change on the econ-
omy could justify more stringent mitigation
policies, as we have seen in our three papers.
More recent econometric studies could be used
to calibrate the damage function [23| 24] ; how-
ever, they might face missing data or difficul-
ties to capture the full range of impacts. Other
works try to develop the damage functional
form: for instance, Da Costa (2024) noted that
the shape of DICE’s damage function crushed
high values and suggested a damage function
based on a growth-effect mechanism [12], based
on Bilal and Kénzig recent work [g].

New extensions try to introduce stochastic-
ity [46], tipping points [I1] or spatial structure
[T7]. Recent papers on uncertainty involve the
use of deep learning [37] or statistical physics
[47] to better understand the mechanisms in
place.

However, some persistent uncertainties and
dilemma cannot be removed. For instance,
Stern argues that from a moral point-of-vue,
pure-time discounting is essentially discrimi-
nation by date of birth. On an other hand,
no matter our efforts in quantifying the dam-
ages, radical uncertainty remains at the same
time on the climate system and on the econ-
omy, such that we could cross physical tipping
points by 4 °C above pre-industrial levels [26],
but also socio-economic tipping points (con-
flicts, migration, etc. [7), 41]).

Some thing we are sure of is that CBA-IAMs
poorly capture the potential changes in energy
systems, lacking of modules that would inte-
grate learning-by-doing and learning-by-using,
supply chain optimisation and economies of
scale, reduction of the perceived risks of the
new technologies, etc. For this task, hybrid



models can better represent high inertia de-
rived from their representation of urban and
transport system. Because reaching a single
monetized estimate of the overall damages may
be futile considering the diversity of impacts
and the uncertainty about the future [34] (es-
pecially when there are no sign of convergence
in energy use for developed countries with sim-
ilar GDP per capita [33]), we should encour-
age the use of a wide range of models, notably
simulation models, to explore the imaginable
paths that could lead to a sustainable future.

To tackle nonequilibrium effects, learning
effects, and bounded rationality, more het-
erodox approaches (eg. agend-based climate-
economy models) may also be a precious re-
source [22], 36].
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