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Abstract

Latest empirical estimates reveal a heavy underestimation of the economic damages from climate

change, comprehending extreme events and persistence of impacts on the economy. To ensure

a just transition towards a net-zero target that keeps global warming below 2°C, we aim to in-

troduce a novel damage function in the Nested-Inequalities Climate Economy (NICE) model, a

derivative of the RICE model that accounts for within-country and between-country inequalities.

We begin with a detailed examination of the model and the limitations associated with traditional

Integrated Assessment Model damage functions. Following this, we suggest conceptual and formal

enhancements to the standard quadratic damage function. These modifications will be subjected to

forthcoming evaluations through sensitivity analyses to identify the optimal calibration according

to current knowledge, allowing us to analyze the effects of the chosen damage function on tem-

perature trajectories, inequalities, and the cost of implementing a uniform or differentiated carbon

tax.

Keywords : Climate Change, IAM, Damage Function, Inequality, Climate Policy
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Résumé

Les estimations empiriques les plus récentes, en incluant les événements extrêmes et la persistance des im-

pacts sur l’économie, révèlent une sous-estimation significative des dommages économiques liés au change-

ment climatique. Afin d’assurer une transition juste vers un objectif de zéro émission nette qui maintienne

le réchauffement mondial en dessous de 2°C, nous visons à introduire une nouvelle fonction de dommages

dans le modèle Nested-Inequalities Climate Economy (NICE), une adaptation du modèle RICE prenant

en compte les inégalités intra- et inter-pays. Pour ce faire, nous présentons extensivement le modèle

et les limitations propres aux fonctions de dommages traditionnelles des Integrated Assessment Models,

avant de proposer des améliorations formelles et conceptuelles à apporter à notre fonction de dommage

quadratique. Ces nouveaux apports feront dans un second temps l’objet d’analyses de sensibilité afin de

déterminer le meilleur calibrage au regard des connaissances actuelles, et nous observerons les effets de

la fonction sélectionnée sur les trajectoires de températures, les inégalités et le prix d’une taxe carbone

uniforme ou différenciée.

Mots-clefs : Changement climatique, IAM, Fonction de dommages, Inégalités, Politique climatique
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I don’t want to set the world on fire,

I just want to start a flame in your heart

The Ink Spots

1.1 Climate change and its damages

Regardless of The Ink Spots intentions, the anthropogenic origin of climate change is well and truly es-

tablished [1]. It even predates them: for instance, there is evidence of a relationship between the cooling

during the Little Ice Age and the genocide of indigenous peoples during the colonization of the Americas,

the abandonment of cleared land having significantly increased carbon sequestration on the land surface

[2]. Nowadays, human actions leave global impacts on the Earth system, such that global surface tempera-

ture has increased by 1.09 [0.95 to 1.20]℃ above pre-industrial levels (1850-1900) in the decade 2011-2020

[3]. This warming affects, among other things, yields in agriculture [4] (even though agriculture itself is

responsible for at least 15% of total Greenhouse Gas (GHG) emissions [5], [6]), human and non-human

health [7]–[9], or economic growth [10].
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Two recent studies, while having different methodologies, converge on the same striking conclusion:

the macroeconomic damages from climate change are six times larger than previously thought [11], [12].

We could be facing a permanent reduction in average global income by 19% [11-29] by 2050, regardless of

our future choices concerning GHG emissions. Then, the costs of mitigation to limit global warming to

2 ℃ would be six times lower than the costs of climate change [11].

These results bear huge implications for future just-transition policies, as the 2024 G20 Rio de Janeiro

summit plans to tackle ”energy transition and sustainable development in its social, economic and envi-

ronmental aspects” and the European Union (EU) is working on its 2050 carbon-neutral policy.

To evaluate the future impact of climate change and associated public policies on welfare, we will

use a very standard approach, relying on a Cost-Benefit Analysis (CBA) using an Integrated Assessment

Model (IAM). We will seek to introduce an updated damage function in line with the most recent results,

and pay particular attention to the way in which climate change damages and inequalities interact.

After outlining the general functioning of IAMs, we will provide a detailed overview of the Nested-

Inequalities Climate Economy (NICE) model, then focus on the potential modifications to its damage

function. As our work is still ongoing, our preliminary results will be presented and discussed at a later

time, during a conference and subsequently in a working paper.

1.2 Integrated Assessment Models

IAMs are climate-economy models designed to evaluate the interactions between human activities and

natural processes, specifically climate change, with the aim of informing policy decisions related to the

costs and benefits of climate change mitigation and adaptation. They are useful to estimate the Social

Cost of Carbon (SCC), i.e. the cost (in current dollars) of the impacts of climate change caused by the

emission of an additional ton of CO2e emissions. They includes at least the following modules:

• a tool projecting the path for GHG emissions;

• a model mapping GHG emissions into climatic change;

• a damage component that calculates the economic costs of climatic change;

• a social welfare function for aggregating damages over time and across space.

The primary objective of IAMs is to maximize the social welfare function, balancing the tradeoff

between immediate mitigation efforts (resulting in a reduction in current well-being) and future climate

damages (leading to a loss in well-being over a more distant timeframe) [13].
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In order to find the optimal path of economic activity and carbon emissions over time, climate-economy

models calculate social welfare under the assumption of Total Utilitarianism, i.e. as the sum of the welfare

of all individuals (as opposed to Average Utilitarianism, which calculates an average social welfare across

all existing individuals). It should be noted that, all else being equal, this implies that the existence of

additional people is regarded as a social benefit [13]. The social welfare function then takes the following

form:

W (cpc(t)) =
∑
t

l(t)

(1 + ρ)t
cpc(t)1−η

1− η
(1.1)

With:

• W : social welfare

• cpc(t) : per capita consumption over the time period t

• l(t) : population over the time period t

• η : inequality aversion (marginal utility elasticity)

• ρ : rate of pure time preference

The three most widely used models to date are the Dynamic Integrated model of Climate and the

Economy (DICE), Framework for Uncertainty, Negotiation, and Distribution (FUND), and Policy Analy-

sis of the Greenhouse Effect (PAGE) models, which are employed, for example, by the U.S. Environmental

Protection Agency. DICE is an IAM with a Ramsey-type of optimal economic growth model. Under

a certainty-equivalent approach, it seeks to optimally allocate consumption and investment over time to

maximize the present value of utility [14], [15]. FUND focuses its ambition on equitable climate policies

by including detailed damage functions that estimate the economic impacts of climate change on vari-

ous sectors, including agriculture, health, and infrastructure. It uses 16 regions with different outputs,

emissions and damages [16]. Note that a version of DICE, Regional Integrated model of Climate and the

Economy (RICE), also provides regional disaggregation across 12 regions. PAGE incorporates a probabilis-

tic approach to account for uncertainties in climate sensitivity, damage functions, and economic impacts,

alongside its regional and sector-specific impacts framework [17]. Unlike DICE, FUND and PAGE assume

that GDP growth is exogenous [18].

1.3 Nested-Inequalities Climate Economy (NICE) model: a

conceptual description

The NICE model is an IAM that builds upon Nordhaus’s RICE model but offers much greater granularity.

The 12 regions are disaggregated into 179 countries1 and within-country inequalities are introduced on the

the basis of consumption quantiles. They are then reflected through damages, mitigation costs, and carbon
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tax burdens. This model embodies the idea that the distribution of damages within regions can cause some

members of future generations to be less affluent than their current counterparts. Consequently, future

poors might bear more than their proportional share of the damage, even with a growth assumption and

an optimal policy computed by aggregate models. Optimal mitigation efforts thus depend on the rate of

pure time preference ρ and the inequality aversion η [19].

NICE also allows to account for between-country inequalities: in their paper, Dennig et al. (2015) [20]

show that the disaggregation from RICE to NICE increases the Gini coefficient by 10 percentage points

(0.55 to 0.65 respectively).

In the following, we will use the latest version of NICE [21] enhanced by the contributions of Young-

Brun et al. (2024) [22], which includes distribution, damages and mitigation at the country level, revenue

recycling scenarios at the country and global levels (allowing to encompass the effects of different policy

designs on a +2 ℃ target, whether with a global carbon tax or optimally differentiated taxes) and various

degrees of redistribution. On top of the existing model, we also included a net-zero 2050 scenario in order

to determine the necessary carbon tax pathways required to achieve the EU’s goal.

1183 countries as inputs but Somalia, Venezuela, New Caledonia and Trinidad and Tobago were removed due to

data limitations.
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2.1 Nested-Inequalities Climate Economy (NICE) model: a

technical description

The NICE model is structurally similar to DICE [14], and a comprehensive description of its functioning

has been made by Young-Brun et al. (2024, [22]). All indices, parameters, and variables are listed in

Appendix A.
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2.1.1 General structure

We employ the Mimi framework, specifically the MimiFAIRv2 module developed by Errickson et al. (2022)

[23]. This module, based on the Finite Amplitude Impulse Response (FAIR) model, computes the global

climate system’s response to GHG emissions, effectively capturing non-linearities in the carbon cycle while

maintaining a low level of complexity and run-time [24].

At first, the initial concentrations of emissions, along with the radiative response and radiative forcing of

aerosols, are updated. This update also applies to methane (CH4), carbon dioxide (CO2), fluorinated gases,

substances regulated by the Montreal Protocol, and nitrous oxide (N2O). Finally, the initial temperature

is defined.

The emissions and radiative forcing scenario are defined according to SSP2-452, between 2020 and

2300. There are 10 quantiles in each of the 179 countries, that can be aggregated into the 12 RICE regions

([”US”, ”EU”, ”Japan”, ”Russia”, ”Eurasia”, ”China”, ”India”, ”MidEast”, ”Africa”, ”LatAm”, ”OHI”,

”OthAsia”]), 13 regions (”EU” from RICE is splitted into ”EU27”, designating the EU, and ”OthEU”,

designating the rest of Europe), or 20 regions from the World Population Prospects (WPP).

Abatement and gross output components are added before the FAIR carbon cycle, which is subsequently

coupled with local damages, net production (i.e. after mitigation costs and damages), tax revenues recy-

cling, distribution of costs across different quantiles of the population and welfare valuation components.

2.1.2 Gross economy

NICE is a classical one-sector model relying on a Cobb-Douglas production function. The capital K[t, c]

in each country c at time t is initialized as k0[c] and updated by taking into account the previous year’s

capital depreciation depk and the previous year’s investment I, multiplied by 5 (representing a 5-year

period), s.t.:

K[t, c] = (1− depk[t, c])5 ·K[t− 1, c] + I[t− 1, c] · 5 (2.1)

We can inject the calculated value into the production function in capital K[t, c] and labor l[t, c] (exogenous

and equal to the country population) to obtain the gross output Y GROSS[t, c]:

Y GROSS[t, c] = tfp[t, c] ·K[t, c]share · l[t, c](1−share) (2.2)

Total factor productivity (tfp[t, c]) is also exogenous, and the share of income allocated to capital (share)

is set to 0.3.
2The definition of Shared Socioeconomic Pathways (SSPs) and their key characteristics can be found in the

appendix B.
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2.1.3 Abatement

The abatement cost function takes the same form as in Barrage and Nordhaus (2024) [14]: a polynomial

function of the emissions mitigation rate µ with an intercept θ1 representing the necessary fraction of

output to bring emissions to zero.

ABATEFRAC[t, c] = θ1[t, c] · µθ2 [t, c] (2.3)

With θ2 = 2.6. As for it, the abatement cost is calculated as:

ABATECOST [t, c] = Y GROSS[t, c] ·ABATEFRAC[t, c] (2.4)

Let us write C(µ) the cost of abatement in dollars per unit of emissions.

C(µ) = ABATEFRAC(µ) · Y
E

=
θ1[t, c] · µθ2 [t, c]

σ[t, c]
(2.5)

σ[t,c] represents the emissions output ratio (in unit of emissions per dollars) that models emissions intensity

as a function of economic activity for each country c at each period t. It is an exogenous parameter

calibrated on emissions projections of the REMIND project [25].

To make the function country-specific, we calibrate θ1 using the global backstop price (515 2019US$ per

tCO2 in 2050) estimated in Barrage and Nordhaus (2024) [14] from the ENGAGE study [26]. We establish

that the backstop price decreases by 1%/year betwen 2020 and 2050, and by 0.01%/year afterwards.

As a reminder, a backstop technology is a set of technologies such that at its cost, the economy achieves

net-zero carbon emissions. It leads to the assumption that the marginal cost of abatement at a 100%

mitigation rate (µ = 1) per unit of emission ( ∂C(µ=1)
∂µ

) is equal to the global backstop price (pbacktime)

in every country. Therefore, based on equation (2.5), we have:

∂C(µ = 1)

∂µ
= pbacktime[t] (2.6)

θ1[t, c]θ2

σ[t, c]
= pbacktime[t] (2.7)

θ1[t, c] = pbacktime[t]
σ[t, c]

θ2
(2.8)

Eventually, µ[t, c] can be expressed as:

µ[t, c] =

(
C′(µ)

pbacktime[t]

) 1
θ2−1

=

(
country_carbon_tax[t,c]

pbacktime[t]

) 1
θ2−1

(2.9)

In the NICE model, we bound the values of µ between 0 and 1 to prevent negative emissions (µ > 1).

The calculation of the country carbon tax depends on the chosen mitigation control regime: whether we

opt for a global carbon tax (country_carbon_tax[t, c] = global_carbon_tax[t]), a differentiated tax by



2

8 CHAPTER 2. MATERIALS AND METHODS

country (country_carbon_tax[t, c] ∝ reference_carbon_tax[t]), or a given mitigation rate per country

(where µ[t, c] is given, µ = µinput, and country_carbon_tax[t, c] = pbacktime[t] · (µinput[t, c])
θ2−1).

2.1.4 Emissions

In their most recent paper, Barrage and Nordhaus enhance their emissions calculation system by allowing all

GHGs to be abatable, not just CO2. Our model retains the previous version of the calculation, determining

CO2 emissions as follows:

Egtco2[t, c] = Y GROSS[t, c] · σ[t, c] · (1− µ[t, c]) (2.10)

2.1.5 Temperature

From the global temperature increase given by the FAIR model, we derive the country-specific temperature

anomalies with scaling coefficients (β_temp) according to the Coupled Model Intercomparison Project

(CMIP) Phase 6 projections [27]:

local_temp_anomaly[t, c] = β_temp[c] · global_temperature[t] (2.11)

2.1.6 Damages

The climate damages function of NICE, prior to modification, is inspired by that provided by Kalkuhl

and Wenz (2020, Supplementary Materials, 4.2) [28]. It is a standard quadratic function where dam-

ages (LOCAL_DAMFRAC_KW ) are expressed as a share of GDP. However, it differs from traditional

approaches by accounting for local temperature increases (local_temp_anomaly) rather than global warm-

ing. Thus, it takes the following form:

LOCAL_DAMFRAC_KW [t, c] = β1_KW [c] · local_temp_anomaly[t, c]

+ β2_KW [c] · local_temp_anomaly2[t, c] (2.12)

with β1_KW [c] = α + 2βT0[c] and β2_KW [c] = β (and α = −0.01128, β = 0.00092), being country-

specific parameters that are calibrated to represent a general relationship between temperature increase

and climate damages, as predicted in the econometric analysis by Kalkuhl and Wenz (2020) [28]. Using a

cross-sectional model, they find that an increase of 1 °C reduces Gross Regional Product (GRP) by 2-4%.

With an annual panel model in their prefered econometric specification, they estimate that an increase of

1 °C in a hot region (T = 25 ℃) decreases the output by about 3.5%, and that +1 ℃ in a cold region

(T = 10 ℃) decreases the output by 0.8%.



2

2.1. NESTED-INEQUALITIES CLIMATE ECONOMY (NICE) MODEL: A TECHNICAL
DESCRIPTION 9

These results are implemented to calibrate the parameters α and β in the NICE model, and β1_KW [c]

is then determined by setting the preindustrial local temperature T0[c] after the data provided by Dell et

al. (2012) [10] on the average annual temperature in countries for the period 1900-1909.

It should be noted that LOCAL_DAMFRAC_KW represents the proportion of GDP lost. In the

last version of DICE, the net output after damages is calculated as Y = δ(∆T [t, c])Y GROSS, where

δ(∆T [t, c]) = (1−Ω(∆T )) and Ω(∆T ) is a standard quadratic function in ∆T [14]. In NICE, the functional

form of climate damages δNICE(∆T [t, c]) matches the ones used in previous RICE or DICE models [29],

[30]:

δNICE(∆T [t, c]) =
1

1 + LOCAL_DAMFRAC_KW [t, c]
(2.13)

2.1.7 Net economy

The output net of damages and abatement costs Y is easily calculated as:

Y [t, c] = δNICE(∆T [t, c]) · (1−ABATEFRAC[t, c]) · Y GROSS[t, c] (2.14)

We define the investment (I) as a fraction (s, the saving rates) of net output (Y ) and the consumption

(C) as the difference between net output and investment:

I[t, c] = s[t, c] · Y [t, c] (2.15)

C[t, c] = Y [t, c]− I[t, c] = (1− s[t, c]) · Y [t, c] (2.16)

Consumption per capita (CPC) and net output per capita (Y _pc) are then calculated as the ratio of the

respective variables to the population, scaled if necessary to match the right units:

CPC[t, c] =
C[t, c]

l[t, c]
(2.17)

Y _pc[t, c] =
Y [t, c]

l[t, c]
· 103 (2.18)

2.1.8 Carbon tax trajectories

The following sections are specific to NICE and are partially described in Budolfson et al. (2021) [21] and

Young-Brun et al. (2024) [22].

To determine the value of the carbon tax (global_carbon_tax or reference_carbon_tax, depending

on the selected option) for each time period (year_step), we apply an exponential growth carbon tax

trajectory. This approach assumes a carbon tax of $0 in the initial period (year_tax_start), followed by

an immediate increase to tax_start_value, after which the tax increases exponentially at a specified rate
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(g_rate) until the end of the designated period (year_tax_end). Its value remains constant until the

model’s last period (year_model_end). Thus, for t ∈ [year_tax_start+1 : year_step : year_tax_end]:

tax_values[t] = tax_start_value ∗ (1 + g_rate)(t−(year_tax_start+1)) (2.19)

full_tax_path = [0; tax_values;fill(tax_values[end], year_model_end - year_tax_end)] (2.20)

2 ℃ scenario

By default, NICE runs under the 2 ℃ scenario. To achieve the optimal scenario, we simulated a large

number of global carbon tax trajectories and retained the one which maximized total welfare from 2020

to 2100 (using a discount rate ρ of 0.015) while keeping the temperature increase below 2 ℃ from 2020 to

2120. By varying the initial value from 80 to 120 and the growth rate from 0.025 to 0.035, we obtained

tax_start_valueoptimal = 114 and g_rateoptimal = 0.03.

To find optimally differentiated carbon tax trajectories, we rely on the method given by Young-Brun

et al. (2024) [22]. We maximize the sum of all utilities from consumption (before climate damages

and taxes) under an emission budget constraint expressed by
∑

c(1 − µ[t, c])E[t, c] < E[t]. It gives us

a relationship between the carbon tax value in any country c and the carbon tax value in a country of

reference, that we set as the United States of America (USA). Because we are now looking for the optimal

carbon tax trajectory which maximizes welfare in the USA, we have to perform new simulations of various

trajectories. By varying the initial value from 275 to 325 and the growth rate from 0.025 to 0.04, we obtain

differentiated_tax_start_valueoptimal = 277 and g_rateoptimal = 0.035.

Net-zero 2050 scenario

To determine the optimal trajectory of the global carbon tax under the EU’s net-zero 2050 target, we added

a new constraint to the optimization described for the 2 ℃ target (section 2.1.8): only the trajectories that

result in zero emissions from the EU before 2050 are retained. We conducted various tests to observe the

effect of bounds definition for tax_start_value and g_rate, the characteristics of which are presented in

Table 2.2.

The last four rows of the table correspond to the same test. We examined every trajectory that met the

net-zero target before 2050 to assess the significance of welfare differences across the trajectories and years.

Given the less-than-0.5% difference in global welfare over the entire carbon tax period between the net-zero

2050 target and the optimal value (net-zero 2038), we chose to set (tax_start_valueoptimal; g_rateoptimal) =

(114; 0.052), which achieve net-zero by 2050. Similar to section 2.1.8, we aimed to identify the trajectory

that maximizes welfare in the USA over the period 2020-2100. To achieve this, we varied the initial value

from 275 to 450 and the growth rate from 0.035 to 0.1.
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From
(tax_start;rate)

To
(tax_start;rate)

Optimal pa-
rameters
(tax_start;rate)

Maximal welfare
value

EU27 net-zero
goal achieve-
ment

(100; 0.04) (800; 0.1) (300; 0.04) - 3.07793533 e8 2038
(80; 0.025) (120; 0.070) (120; 0.07) - 3.08241602 e8 2043
(110; 0.05) (120; 0.06) (120; 0.06) - 3.08335754 e8 2046
(110; 0.045) (114; 0.055) (114; 0.055) - 3.08465239 e8 2049
(110; 0.045) (114; 0.055) (113; 0.0545) - 3.08484631 e8 2049/50
(110; 0.045) (114; 0.055) (111; 0.055) - 3.08501604 e8 2049/50
(110; 0.045) (114; 0.055) (114; 0.052) - 3.08511639 e8 2050

Table 2.2: Various trajectories achieving EU net-zero before 2050, along with the associated global
welfare.

By doing so, we obtained differentiated_tax_start_valueoptimal = 280 and g_rateoptimal = 0.065,

which translate in a similar initial tax value than the 2 ℃ scenario, but a faster growth towards the

backstop price.

2.1.9 Revenue recycling

The carbon tax revenue calculation is quite simple: it corresponds to the product of a country’s emissions

(EgtCO2[t,c]) and its carbon tax (country_carbon_tax[t, c]), calculated in corresponding units, ajusted by

any potential revenue loss (lost_revenue_share, which is set to a default zero, meaning that the entire

tax revenue is available for recycling).

tax_revenue[t, c] =
(
E_gtco2[t, c]× country_carbon_tax[t, c]× 109

)
×

(1− lost_revenue_share) (2.21)

Young-Brun et al. (2024) [22] explored multiple methods for distributing carbon tax revenues. These

configurations are of significant importance, as each reflects a distinct potential public policy strategy

for implementing a carbon tax. These strategies can be compared both with one another and against a

baseline model without any CO2 mitigation policy. First, the uniform global tax and differentiated carbon

taxes can be distributionnally neutral (a ”no recycling” scenario), where carbon tax revenues are refunded

within each country to exactly offset the carbon tax payment, making it possible to isolate the carbon tax

effects on emissions without the potential offsetting effects of income redistribution. We can also configure

the model to allow for full revenue recycling at the national level, where revenues are redistributed as equal

per capita payments within each country.

Subsequently, we test a uniform global carbon tax with total per capita revenue recycling at the

global level, assuming the feasibility of significant international transfers between countries: the rate of

shares recycled is 100% (global_recycle_share = 1). Aware of the limitations of this assumption, we
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also simulate a “Loss and Damage” fund, financed by transfers from developed countries to LLMICs (as

defined by the World Bank and listed in Appendix C). It takes the form of a global uniform carbon tax,

recycled at a rate (global_recycle_share) of 5% to households in LLMICs, the remaining carbon tax

revenues(1 − global_recycle_share) being redistributed within countries on an equal per capita basis.

Three criteria are then considered for redistribution:

• as a ratio to relative damages weighted by population in LLMICs

(computed with TRANSFRAC_dam_rel_llmic)

• as a ratio to absolute damage (in dollars per capita) in LLMICs

(computed with TRANSFRAC_dam_abs_llmic)

• as a ratio to a risk index (list_risk_index) weighted by population in LLMICs (computed with

TRANSFRAC_risk_llmic)

In the first time step, each redistribution fraction for LLMICs is initialised as the inverse of their total

number:
TRANSFRAC_dam_rel_llmic[t = 1, c]

TRANSFRAC_dam_abs_llmic[t = 1, c]

TRANSFRAC_risk_llmic[t = 1, c]

 =
1

Number of LLMICs (2.22)

Then, the redistribution fractions are updated at each time step according to the following formula:

TRANSFRAC_dam_rel_llmic[t, c] =

max
(
LOCAL_DAMFRAC_KW [t, c], 0

)
· l[t, c]∑

c∈LLMIC max
(
LOCAL_DAMFRAC_KW [t, c], 0

)
· l[t, c]

(2.23)

TRANSFRAC_dam_abs_llmic[t, c] =

max
(
LOCAL_DAMFRAC_KW [t, c], 0

)
· Y [t, c]∑

c∈LLMIC max
(
LOCAL_DAMFRAC_KW [t, c], 0

)
· Y [t, c]

(2.24)

TRANSFRAC_risk_llmic[t, c] =
list_risk_index[c] · l[t, c]∑

c∈LLMIC list_risk_index[c] · l[t, c] (2.25)

The risk index is an adapted version of the INFORM Index for Risk Management [31], modified to

account solely for climate-related natural risks in the Hazards & Exposure sub-index, namely flood, tropical

cyclone, and drought. We then combine them with the INFORM country indices for Vulnerability and Lack

of Coping Capacity, based on the latest data available [32]. The risk index allows to account for extreme

events in the recycling process, but it doesn’t take into account other climate threats (e.g. sea-level rise,

ocean acidification, etc.). Note that it is negatively correlated with GDP.
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In the program, the recycling options are controlled using boolean variables: switch_recycle = 0

deactivate revenue recycling, while switch_scope_recycle = 1 act on the level of recycling, either national

(0) or global (1).

If activated, the switch_global_pc_recycle variable entails the recycling of carbon tax revenues glob-

ally on an equal per capita basis. switch_dam_rel_llmic_recycle, switch_dam_abs_llmic_recycle,

and switch_risk_llmic_recycle are used to select the recycling criterion for the ”Loss and Damage” fund

policy. Here is how domestic and global dividends are calculated based on the activated boolean variables:

switch_recycle = 0 No income recycling implies no dividends.

country_pc_dividend_domestic_transfers[t, c]

country_pc_dividend_global_transfers[t, c]

 = 0 (2.26)

switch_recycle==1, switch_scope_recycle==0 Revenues from the carbon tax are recycled at a

national level:

country_pc_dividend_domestic_transfers[t, c] =
tax_revenue[t, c]

l[t, c]× 106
(2.27)

country_pc_dividend_global_transfers[t, c] = 0 (2.28)

switch_recycle==1, switch_scope_recycle==1 Carbon tax revenues are recycled at a global level:

country_pc_dividend_domestic_transfers[t, c] = (1− global_recycle_share[c])× tax_revenue[t, c]

l[t, c]× 106

(2.29)

revenue_recycled_global_level[t] =
∑
c

(tax_revenue[t, c]× global_recycle_share[c])× 10−3

(2.30)

• switch_pc_global_recycle = 1; Carbon tax revenues are recycled globally on an equal per capita

basis (global_recycle_share = 1).

country_pc_dividend_global_transfers[t, c] =
revenue_recycled_global_level[t]∑

c(l[t, c])× 103
(2.31)

• switch_dam_rel_llmic_recycle = 1; OR switch_dam_abs_llmic_recycle = 1;

OR switch_risk_llmic_recycle = 1; Carbon tax revenues are recycled to LLMICs based on the
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selected criterion (global_recycle_share = 0.05). For c ∈ LLMICs:

country_pc_dividend_global_transfers[t, cLLMICs] =

revenue_recycled_global_level[t, cLLMICs]

l[t, cLLMICs] · 103
·


TRANSFRAC_dam_rel_llmic[t, cLLMICs]

TRANSFRAC_dam_abs_llmic[t, cLLMICs]

TRANSFRAC_risk_llmic[t, cLLMICs]

(2.32)

Total dividends per person are eventually computed as:

country_pc_dividend[t, c] = country_pc_dividend_domestic_transfers[t, c] +

country_pc_dividend_global_transfers[t, c] (2.33)

2.1.10 Distribution across deciles

In order to account for within-country inequalities, we divide each country into consumption deciles

derivated from income deciles following the approach given by Pinkovskiy and Sala-i Martin (2009) [33].

To find income deciles, we first calibrate baseline deciles (quantile_income_shares[t, c, q]) using country

income Gini projections until 2100 in the SSP2-45 scenario3, as provided by Rao et al. (2019) [34]. We

assume that income is distributed across deciles according to a lognormal distribution LN(µ[t, c], σ[t, c]).

Following Cowell (2011), we calculate σ and µ, taking care to maintain homogeneous units, as:

σcons[t, c] =
√
2 · quantile

(
N (0, 1),

gini_cons[t, c]/100 + 1

2

)
(2.34)

µcons[t, c] = log(CPC[t, c] · 103)− (σcons)
2

2
(2.35)

More details on the Julia quantile function can be found here. From the standard deviations σcons[t, c], we

deduce a Lorenz curve for each country and each time step, from which we obtain country income deciles

over time, which then give us access to consumption deciles.

Climate damages, mitigation costs and carbon tax burdens are distributed across deciles using con-

sumption elasticities, more precisely an endogenous CO2-income elasticity (CO2_income_elasticity) and

an exogenous damage elasticity (damage_elasticity). The CO2-income elasticity is calibrated using the

estimation provided in Budolfson et al. (2021, Fig. 1) [21], which is coming from a review of the literature

on the distribution of the initial burden of a carbon (or gasoline) tax and the resulting relationship with

3The definition of SSPs and their key characteristics can be found in the appendix B.

https://docs.julialang.org/en/v1/stdlib/Statistics/#Statistics.quantile
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per capita Gross Domestic Product (pcGDP).

CO2_income_elasticity[t, c] = elasticity_intercept + elasticity_slope · log(GDP ) (2.36)

where :

GDP =


pc_gdp[t, c] if pc_gdp[t,c] ∈ [min_study_gdp, max_study_gdp]

min_study_gdp if pc_gdp[t,c] < min_study_gdp

max_study_gdp if pc_gdp[t,c] > max_study_gdp

(2.37)

The distributions of the shares of the carbon tax burden (carbon_tax_dist) and mitigation costs (abatement_cost_dist)

across deciles are considered equals and relies on the CO2-income elasticity.

The estimation of damage elasticity is thoughtfully presented by Budolfson et al. (2017) [19]. Its value

depends on the impact of climate change at a sub-regional scale, the vulnerability of economic organization

and existing infrastructure, and public policies. While damage elasticity estimation is based on empirical

studies and ethical considerations, there are no empirical estimates available across consumption deciles.

Its value can be inversely proportional to consumption (damage_elasticity = −1), proportional to con-

sumption (damage_elasticity = 1), evenly distributed (damage_elasticity = 0), more than proportional

to consumption (damage_elasticity > 1), etc. However, it is suggested that poorer populations will dis-

proportionately suffer from climate change [35]–[38]. Therefore, we assume that climate damages will be

slightly less than proportional to income, by choosing damage_elasticity = 0.85 (as a reminder, all param-

eters values can be found in Appendix A). Distribution of the share of climate damages (damage_dist) can

be then calculated using baseline deciles (the ratio between decile consumption and average consumption)

and damage elasticity.

Let us now navigate through the consumption per quantile calculations, from gross consumption to

consumption after the redistribution of carbon tax revenues. First, we define a gross consumption per

capita (CPCGROSS), such that:

CPCGROSS [t, c] =
(1− s[t, c])Y GROSS[t, c]

l[t, c]
(2.38)

Gross consumption per quantile (qc_base[t, c, q]) is expressed as:

qc_base[t, c, q] = nb_quantile · CPCGROSS [t, c] · quantile_income_shares[t, c, q] (2.39)

Then, we calculate the consumption per quantile net of climate damages and mitigation costs by subtracting

the sum of the products of the consumption affected by the incurred costs (either in damages or mitigation)

and the distributions of the shares across deciles from qc_base. In the NICE model, for all forthcoming
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calculations, we ensure that the value of consumption is never negative, maintaining a minimum value of

zero.

qc_post_damage_abatement[t, c, q] = qc_base[t, c, q] −

nb_quantile · CPCGROSS [t, c] ·ABATEFRAC[t, c] · abatement_cost_dist[t, c, q] −

nb_quantile · CPC[t, c] · LOCAL_DAMFRAC_KW [t, c] · damage_dist[t, c, q] (2.40)

To obtain consumption by quantile after the tax, we reduce qc_post_damage_abatement by the

product of the carbon tax burden (carbon_tax_dist[t, c, q]) and the carbon tax payment per capita

(tax_pc_revenue[t, c]).

qc_post_tax[t, c, q] = qc_post_damage_abatement[t, c, q] −

(nb_quantile · tax_pc_revenue[t, c] · carbon_tax_dist[t, c, q]) (2.41)

It should be noted that the initial burden of the carbon tax refers to the sum of mitigation costs and tax

payments before tax revenues are recycled and redistributed.

• If the revenues are recycled, then post-tax consumption per quantile (qc_post_recycle) is increased

by the product of the total per capita dividends from the carbon tax (country_pc_dividend) and

the share of its recycling to each decile:

qc_post_recycle[t, c, q] = qc_post_tax[t, c, q] +

(nb_quantile · country_pc_dividend[t, c] · recycle_share[c, q]) (2.42)

• If revenues are not recycled, carbon tax revenues are refunded within each country according to the

distribution of the initial burden, eliminating the cost of tax payments.

qc_post_recycle[t, c, q] = qc_post_tax[t, c, q]+

(nb_quantile · tax_pc_revenue[t, c] · carbon_tax_dist[t, c, q]) (2.43)

Which is equivalent to qc_post_recycle[t, c, q] = qc_post_damage_abatement[t, c, q]

We can eventually aggregate those consumption values at country, region or global level, and compute the

proportion of per capita quantile consumption (qc_share, in %), as:

qc_share[t, c, q] =
qc_post_recycle[t, c, q]∑
q qc_post_recycle[t, c, q]

· 100 (2.44)
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2.1.11 Welfare

We use two methods to calculate welfare: the standard approach and the Equally Distributed Equivalent

Consumption (EDEC) approach. It corresponds to the level of consumption that, if given to each member

of a population, yields the same level of welfare as the actual distribution of consumption. For each country

(c), standard and EDEC welfare are calculated as follows:

welfare_country[t, c] =

(
l[t, c]

nb_quantile

)∑
q

(
qc_post_recycle[t, c, q](1−η)

(1− η)

)
(2.45)

welfare_global[t] =
∑
c

(welfare_country[t, c]) (2.46)

cons_EDE_country[t, c] =

(
1

nb_quantile

∑
q

(qc_post_recycle[t, c, q](1−η))

) 1
(1−η)

(2.47)

cons_EDE_global[t] =

(∑
c(l[t, c] · cons_EDE_country[t, c](1−η))∑

c l[t, c]

) 1
(1−η)

(2.48)

We also have to account for the case where η = 1. We use a logarithm transformation, which gives:

welfare_country[t, c] =

(
l[t, c]

nb_quantile

)∑
q

log(qc_post_recycle[t, c, q]) (2.49)

welfare_global[t] =
∑
c

(welfare_country[t, c]) (2.50)

cons_EDE_country[t, c] = exp

(
1

nb_quantile

∑
q

log(qc_post_recycle[t, c, q])

)
(2.51)

cons_EDE_global[t] = exp
(∑

c l[t, c] · log(cons_ED_country[t, c])∑
c l[t, c]

)
(2.52)
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3.1 Some issues related to previous damage functions

In 2002, Richard Tol estimated that a 1 ℃ increase in temperature would result in a 2% positive effect on

global GDP [39]. In contrast, 22 years later, Bilal and Känzig [12] assert that a 1 ℃ temperature shock

would lead to substantial and enduring adverse effects on GDP, with a peak decline of -12% occurring six

years after the shock. Using a time-series local projection approach, they estimate that global GDP per

capita would have been 37% higher in the absence of the 0.75 ℃ increase from 1960 to 2019. How could such

significant discrepancies arise? Is it possible to accurately estimate the effects of future climate change?

These last decades, many critics have been made about the damage functions used in IAMs. Howard and

Sterner define the damage function as the translation of a temperature change into a percentage change

in GDP [40]. It usually takes the form of a quadratic function calibrated for +2 ℃ to +4 ℃ temperature

increase, under certainty, leading to a thin-tailed probability distribution for hotter temperatures. In those
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cases, there are no particular dynamic interactions, the damages are interpreted as level-effects on GDP

and they simply results into a welfare-equivalent consumption loss of similar representative agents.

Before presenting our thoughts on how to implement the latest results into the NICE model, let us

review some inherent limitations of conventional damage functions.

3.1.1 Level vs. Growth effects

By ”level effect” we refer to the immediate impact of a temperature shock on GDP, whereas the ”growth

effect” pertains to the dynamic relationship between GDP growth rates and climate damages. In the

case of a quadratic damage function, the level effect is proportional to temperature changes squared,

while the growth effect is disregarded. This is a significant limitation, as the notion that climate change

could have persistent effects on the economy (e.g., through damages to physical capital, human capital,

or productivity) is gaining traction, although it remains challenging to quantify accurately [41], [42]. To

incorporate growth effects into the damage function, it is possible to endogenize Total Factor Productivity

(TFP) and capital, provided that a valid estimation of climate change impacts on these variables is available

[18], [43].

However, recent estimations of the effects of climate change on GDP have continued to face difficulties

in disentangling level effects from growth effects. Studies by Kalkuhl and Wenz (2020), Bilal and Känzig

(2024), as well as Kotz, Levermann, and Wenz (2024), have predominantly operated under the assumption

of a level effect [11], [12], [28]. Still, the last two studies uses lags to more adequately capture the extent of

impact persistence over 10 years for temperature effects. Bilal and Känzig (2024) assume they could modify

their model and impose permanent impacts beyond 10 years, leading to growth effects and consequently

bigger welfare impacts.

3.1.2 Econometrics and the Challenges of Long-Term Projections

To capture the actual impact of climate change on production, econometric methods have evolved over the

past decade. In their meta-analysis, Howard and Sterner (2017) [40] discuss the shift from cross-sectional

regressions (which allowed for the identification of local temperature and precipitation effects on national

GDP without accessing trends or observing emergent phenomena) to computable general equilibrium

analyses (e.g. [44], which allows for sectoral damage assessment), and finally to panel regressions using

weather data (e.g. [10], [41], [28]). In their paper, Dell et al. (2014) argue that the calibration of the

coefficients in the quadratic damage function can be deeply enhanced by panel-based evidence, even though

extrapolating to the long run remains challenging [45]. Howard and Sterner (2017) also acknowledge that

estimating climate damages at +3 ℃ or +4 ℃ become increasingly speculative [40].
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Despite the increased precision provided by the evidence-based coefficients of the quadratic damage

function, some limitations persist. For instance, the study used to calibrate the coefficients in NICE

(Kalkuhl and Wenz, (2020), [28]), which employs an annual panel model, a long-difference model, and a

cross-sectional model, lacked data for most African countries, the Middle East, and Southeast Asia. As

will be discussed in section 3.1.4, this data gap may understate the estimated impact of climate change,

as the poorest and hottest regions are the most severely affected.

Furthermore, their study does not account for non-market damages or damages related to extreme

weather events or sea-level rise. It is noteworthy that in earlier versions of NICE, sea-level rise damages

were integrated into the quadratic damage function; however, the overall effects were weaker due to global

estimates of temperature effects on GDP being lower than those revealed by recent econometric studies.

3.1.3 Extreme Events and Non-Market Damages

”Most IAMs are substantially under-estimating the current economic costs of climate change”. This is what

a recent paper reports regarding how anthropogenic GHG have altered the occurrence of specific extreme

weather events, and the extent to which damages can be attributed to certain types of these extreme events

[46]. The authors show that the biggest share of net damages are due to storms (64% of them), followed

by heatwaves (16%), floods and drought (10%) and wildfires (2%). The major part (63%) of the damages

are related to the loss of human lives. They also outline the major differences between their methodology

and that of IAM-based estimations, which produce a measure of decline in economic flow (proportional to

global GDP), while attribution-based estimates measure the loss in economic stock. Additionally, IAMs

(such as DICE) sometimes assign an arbitrary percentage of excess damage to their damage functions to

account for extreme events, without a scientific basis for such attribution. Bilal and Rossi-Hansberg (2023)

develop methodologies to estimate the effects of climate change on the various components of GDP in the

USA [47]. Their findings indicate a correlation between storm impacts and capital depreciation shocks

within the model, while heat waves are characterized as a combination of amenity and productivity shocks.

These findings align with Murtin (2024) [48], who emphasizes that extreme events lead to the destruction

of physical capital and reduced productivity. The literature on extreme events is extensive, but the study

by Hsiang and Jina (2014) [49] is especially noteworthy. Their regression analysis of tropical cyclones from

1950 to 2008 revealed that while storms are the primary cause of damage, income losses result from a small

yet persistent suppression of annual growth rates that extends over the fifteen years following a disaster.

These extreme events therefore exert a growth effect on GDP, which can have substantial impact when

accumulated over time.

Moreover, the damages assessed from extreme events are considered solely through the lens of economic

production, neglecting natural capital—a concern highlighted in the Dasgupta review [50]. Integrating

natural capital into climate-economy models is crucial for capturing the loss of non-market goods, as
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demonstrated by Bastien-Olvera and Moore (2021), where natural capital is treated as a form of wealth

[51]. In 2012, Weitzman [30] was pleading for a switch to the use of random variables and probability

density functions, arguing that the damages from climate change pull us in a case of extreme-uncertainty.

To take into account extreme events, he suggested a reactive damage function, adding a term in βT γ (with

γ = 6.754) to the low-polynomial (quadratic) damages expression such that the consumption would be

reduced by half in case of a 6 ℃ temperature increase, and by 99% in case of a 12 ℃ increase.

3.1.4 Country-Specific Damage Differentiation

Finally, beyond the need for damage estimates that either are sector-specific or comprehensively aggregate

all impacts, it is also essential to account for geographic effects that could potentially amplify these

damages. In particular, three characteristics of a country consistently emerge in the literature as significant:

its temperature, its income level, and its historical emissions. The question is whether any of these three

factors serves as a better explanatory variable than the others.

Burke et al. (2015) [41] found that the primary factor differentiating significant from minor temperature

impacts on productivity is the level of temperature itself —an observation also supported by Bilal and

Känzig (2024) [12]. However, Bilal and Känzig caution against overinterpretation due to the imprecision of

their regression estimates across various country categories. In contrast, Dell et al. (2012) [10] argue that

a country’s income level is the predominant factor influencing the impact of climate change on economic

growth, rather than its regional location or temperature.

Moore and Diaz (2015) [18] present two hypotheses with significantly different policy implications to

explain why GDP growth is more sensitive to warming in poorer countries. The first is a temperature

mechanism, suggesting that an increase in average temperature in already warm countries could cause pro-

ductivity damages when biophysical thresholds are exceeded. The second is a resilience mechanism, which

argues that poorer economies are particularly vulnerable because they rely heavily on climate-sensitive

sectors such as agriculture. The first explanation advocates for strong mitigation efforts to preserve living

conditions, while the second suggests prioritizing economic development over climate concerns, potentially

allowing for a temperature increase of up to +6°C by 2150 according to their modified IAM, which accounts

for growth effects through TFP changes or capital depreciation.

Based on their findings, Kotz et al. (2024) [11] provide an interpretation that integrates the three

discussed parameters, stating: ”the largest losses are observed at lower latitudes in regions with lower

cumulative historical emissions and lower present-day income”. In the absence of a definitive explanation

for which variable best accounts for the variation in economic damage proportions, it is essential to consider

these differences among countries.
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3.2 Ideas for a new damage function

3.2.1 The latest empirical estimates

Our aim to enhance the damage function of NICE stems from the recent publications by Kotz, Levermann,

and Wenz (2024) [11] and Bilal and Känzig (2024) [12], whose findings converge. We particularly focused

on the latter, which employs a top-down approach using a time-series local projection method which

better predict extreme events. To determine them, they use a model with 10-years persistent level effects,

analyzing aggregate time-series variations in global mean temperature to capture a true aggregate effect,

incorporating any spillovers and general-equilibrium adjustments. They provide a sound justification for

using global temperature, emphasizing the global scale of climate change and the significance of ocean

temperature or phenomena such as El Niño, which cannot be fully captured by comparing or summing

national data, and argue that global temperature shocks predict a significant and persistent increase in

extreme climatic events. With their specifications, Bilal and Känzig (2024) project a 3 ℃ increase by 2100

with ρ = 2%.

To estimate the effects of temperature on future economic outcomes, they start by estimating poten-

tially persistent deviations from the long-run trend in global mean temperature (i.e. temperature shocks).

Let h be the periods (h = 2), t the time, p the number of lags (p = 2), β̂ the coefficient estimates of the

regression on temperature. The main goal is to isolate shocks that persist for h periods.

T̂ shock
t+h = Tt+h − (α̂+

p∑
i=0

β̂i+1Tt−i) (3.1)

Shocks fluctuate around zero, their maximum value is 0.3 ℃. A 1 ℃ temperature shock does not occur

directly in the historical sample: the authors scaled up the linear effect of smaller shocks, abstracting from

potential non-linearities. Then, for h = {0, ..., 10}, yt+h the (log) world real pcGDP, and xt a vector of

global control (global economic downturns and other financial variables), they compute the dynamic causal

effects to global temperature shocks θh at horizon h (which is the Impulse Response Function (IRF)):

yt+h − yt−1 = α+ θhT
shock
t + x′

tβ + εt+h (3.2)

These θh values are illustrated in their Figure 3, which shows the response of global pcGDP to a 1 ℃

temperature shock over a 10-year period. Three years after the shock, the impact is less than a 5%

reduction in world pcGDP, but it peaks at -12% six years after the shock and does not fully dissipate even

after 10 years.

They find similar results by calculating the following regression over a panel of 173 countries. Given

yi,t the (log) real pcGDP of country i in year t, xi,t a vector of country-specific controls (two lags of
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country-level GDP growth) and εi,t an error term,

yi,t+h − yi,t−1 = αi + θhT
shock
t + x′

tβ + x′
i,tγ + εi,t+h (3.3)

Since the resulting θh from (3.2) and (3.3) are analogous, they investigate regional heterogeneity by catego-

rizing countries into regional clusters, average temperature groups, or per capita income groups (calculated

on the 1957-1959 period). Eventually, they were able to disantangle the effects of temperature shocks on

GDP into Productivity (TFP), investment (I), labor (l) and capital depreciation (depk) shocks by inverting

in their (standard neoclassical growth) model the estimated IRF of output and capital.

Thus, although they do not address issues related to long-term projection uncertainty or the integration

of non-market damages, Bilal and Känzig introduce a dynamic aspect to the impact of damages on output

that persists for 10 years (more than a level effect but less than a growth effect), by more effectively

accounting for the effects of extreme climatic events and extending these results to at least a regional

scale.

3.2.2 How can these new estimates be implemented in NICE?

Given our initial functional form (see equations (2.12) and (3.7)) and the dynamics proposed by Bilal and

Känzig, there does not appear to be an ”obvious” correction that could be applied to equation (2.12). One

idea that was quickly dismissed involved adding a ”excess-damages” function to account for the impacts

attributable to extreme events, similar to Weitzman’s reactive function. We could have augmented our

quadratic function with a term like βT γ , where β and γ would be calibrated based on the results of Bilal

and Känzig, but we would have been missing to capture the interesting 10-year dynamics.

Another possibility would have been to disaggregate our damage function, δNICE(∆T [t, c]) (which

currently applies a level effect on GDP) into its TFP and K components, based on the findings of Bilal

and Känzig (2024, Fig. 10) [12]. In this scenario, we could have endogenized TFP (with capital already

being endogenous in NICE) and sought to apply a similar modification as proposed by Moore and Diaz

(2015) [18] or Alestra et al. (2020) [43], introducing a growth effect calibrated from the most recent data.

This would have replicated the effect of a 1 ℃ temperature shock leading to a maximum productivity loss of

-2.5% and a peak rise in the capital depreciation rate of -0.3 percentage points. However, the depreciation

of capital and TFP are determined as outputs based on Bilal and Känzig model’s inputs, meaning they

reverse the IRF to derive the shocks on ξs and δs (which are the structural damage functions associated

with TFP and capital depreciation, respectively). However, their estimation has been made under the

assumption of optimal growth, i.e. that the trajectories of countries maximize social welfare. As it does

not hold in NICE, we do not retain this solution.

In practice, we face a considerable challenge: modeling temperature shocks and integrating lags into a
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global dynamic framework. Our latest approach involves attempting to detect temperature shocks at each

time step t in our simulation by analyzing past temperature data through a regression model corresponding

to equation (3.1). However, this method assumes that the FAIR module does not overly smooth the

projected temperature trajectory, thereby allowing the detection of shocks rather than merely a trend. If

such shocks are identified, they could then be translated into output damages spread over 10 years, utilizing

the θh values provided by Bilal and Känzig (2024, Fig. 3) [12], adjusted according to the magnitude of the

global temperature shocks. Notably, in their Figure 3, Bilal and Känzig scaled up the θh values of smaller

shocks linearly to reflect the impact of a fictitious 1 ℃ shock. By applying a series of damages over a

10-year period for each detected temperature shock, we can introduce a dynamic response to temperature

impacts on GDP while preserving the overall structure of the NICE model. This method would facilitate

the calculation of global damages, which could subsequently be disaggregated at the national level by

utilizing the θh coefficients from Figures 11 and 12 of their study, which are based on regressions of a panel

of countries grouped by average temperature, per capita income, or region. Given the multiple regressions

performed, each country is associated with θi,jh values, depending on which of its three characteristics

(i, i = {1, 2, 3}, corresponding to region, temperature, or income) and within each characteristic which

sub-group (j) it belongs to. Assuming that potential estimation biases cancel each other out, we could

calculate the country-specific damages, θh[c], by averaging the θi,jh values associated with each country,

weighted by the inverse of the number of countries in each sub-group j of a characteristic i ( 1
ni,j

). For

each global temperature shock, we could then assign specific damages to each country, distributed over

a 10-year period, which would accumulate with previous shocks. The damages would be determined as

follows:

θh[c] =

∑3
i=1

θ
i,j
h

ni,j∑
1

ni,j

(3.4)

To illustrate our approach, let’s imagine a world consisting of three regions (Eurasia, Africa, and the

Americas), three temperature levels (below 10 ℃, between 10 ℃ and 20 ℃, and above 20 ℃), and three

levels of per capita income (low, medium, and high). Consider that there are only two countries in Eurasia

(n1,1 = 2), two in Africa (n1,2 = 2), and three in the Americas (n1,3 = 3), making a total of n = 7

countries. Let’s assume there is one cold country, three hot countries, and the remaining three have annual

average temperatures between 10 ℃ and 20 ℃ (n2,1 = 1, n2,2 = 3, n2,3 = 3). Additionally, suppose

there are three poor countries, two with intermediate income levels, and two wealthy countries (n3,1 = 3,

n3,2 = 2, n3,3 = 2). Now, considering that Denmark is included in our selected panel of countries, we

can estimate the damages it would experience over 10 years following a 1 ℃ temperature shock using the

method described above. Denmark is a cold country (i = 2, j = 1) located in Eurasia (i = 1, j = 1), with

high incomes level (i = 3, j = 3). Thus, we define:

θh[Denmark] =
θ
1,1
h

n1,1
+

θ
2,1
h

n2,1
+

θ
3,3
h

n3,3

1
n1,1

+ 1
n2,1

+ 1
n3,3

=

θ
1,1
h
2

+
θ
2,1
h
1

+
θ
3,3
h
2

1
2
+ 1

1
+ 1

2

=
1

2
(
θ1,1h

2
+ θ2,1h +

θ3,3h

2
) (3.5)
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While this approach could potentially incorporate the dynamic effects of temperature shocks on national

GDP, the authors caution that the θi,jh values were not estimated with precision, without providing clear

reasons for these inaccuracies. We ultimately decided to calibrate the coefficients of our quadratic damage

function (see (2.12)) using the global θh values provided by Bilal and Känzig’s regression (3.2) (2024, Fig.

3) [12], opting for efficiency over complexity.

3.3 NICE’s new damage function(s)

The calibration thus leads to:

LOCAL_DAMFRAC_BK[t, c] = β1_BK[c] · global_temperature[t]

+ β2_BK[c] · global_temperature2[t] (3.6)

with:

• β1_BK[c] = αBK + 2βBKT0[c]

• β2_BK[c] = βBK

• αBK = −0.0579

• βBK = 0.0043478

And the final damages on the net economy are computed as:

δBK,NICE(∆T [t, c]) =
1

1 + LOCAL_DAMFRAC_BK
(3.7)

Note that we are considering the global temperature anomaly, denoted as global_temperature, which

remains from Bilal and Känzig’s analysis, thereby bypassing the scaling module discussed in section 2.1.5.

With this function now established, we turn our attention to potential variations and their effects on the

results of NICE.

1st suggestion: We examine the effect of incorporating country-specific rescaled temperatures into the new damage

function.

LOCAL_DAMFRAC_BK[t, c] = β1_BK[c] · local_temp_anomaly[t, c][t]

+ β2_BK[c] · local_temp_anomaly[t, c]2[t] (3.8)
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2nd suggestion: We introduce a dynamic effect into the damage function.

LOCAL_DAMFRAC_BK[t, c] = β1_BK[t− 5, c] · global_temperature[t]

+ β2_BK[c] · global_temperature2[t] (3.9)

with:

• β1_BK[t− 5, c] = αBK + 2βBK · actual_temp[t− 5, c]

• actual_temp[t, c] = T0[c] + local_temp_anomaly[t, c]

Instead of calculating β1_BK based on each country’s pre-industrial temperatures (T0[c]), we con-

sider the temperature of the country at time (t − 5). According to Bilal and Känzig’s findings,

temperature shocks tend to reach their maximum effect around this period. This approach allows us

to better capture the impact of warming by virtually adding a second quadratic term in temperature

anomaly (the last one in equation (3.10)).

β1_BK[t− 5, c] · global_temperature[t] = αBK · global_temperature[t] +

2βBK · T0[c] · global_temperature +

2βBK · local_temp_anomaly[t, c] · global_temperature[t] (3.10)

3rd suggestion: The shape of the damage function δBK,NICE(∆T [t, c]) could also be modified. It is used to con-

vert the quadratic temperature effect into percentage which is applied to gross production. In the

latest version of the DICE model [14], Nordhaus shifts away from the 1
1+Ω(∆T )

form, adopting in-

stead δnewDICE(∆T [t, c]) = 1 − Ω(∆T ), where Ω(∆T ) is a second-degree polynomial (similar to

LOCAL_DAMFRAC_BK).

In their appendix, Young-Brun et al. (2024) [22] consider the current form of LOCAL_DAMFRAC

as a Taylor expansion around 0 of (1 − exp−LOCAL_DAMFRAC), which they propose as a share of

damages (as a fraction of gross GDP in a country). Therefore, it would be straightforward to adopt

the exact shape they recommend, namely δBK,YB(∆T [t, c]) = 1 − (1 − exp−LOCAL_DAMFRAC) =

exp−LOCAL_DAMFRAC . Alternatively, other methods of normalizing a second-degree polynomial

could be considered, such as using tanh(0.5 · Ω(∆T )).

Thus, for given quadratic damages, we propose to investigate the effect of these forms of damage
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functions:

δBK,newDICE(∆T [t, c]) = 1− LOCAL_DAMFRAC_BK[t, c] (3.11)

δBK,YB(∆T [t, c]) = exp−LOCAL_DAMFRAC_BK[t,c] (3.12)

δBK,tanh(∆T [t, c]) = tanh(0.5 · LOCAL_DAMFRAC_BK[t, c]) (3.13)

δBK,NICE(∆T [t, c]) =
1

1 + LOCAL_DAMFRAC_BK[t, c]
(3.14)

We will therefore examine the impact of three formal modifications on the outcomes of NICE, with a

particular emphasis on the warming trajectories, output damages, and changes in inequalities and welfare.

These modifications involve: 1) the effect of selecting different temperature scales on the damages, 2) the

incorporation of dynamic elements into the damage function, and 3) the alteration of the shape of the

damage function. They can be applied individually or combinatively.
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Conclusion

Despite accurately acknowledging the impossibilty of achieving the 1.5 ℃ target (see [14]), IAMs have

significant limitations. Our focus has been on the calibration of the damage function, an area that Murtin

(2024) notes is heavily debated [48]. The impacts of climate change extend beyond the gross output,

affecting productive capital in its various forms—human, natural, and physical. It is therefore essential

to develop damage functions that incorporate growth effects by integrating feedback mechanisms directly

into productive capital and considering the persistence of climate impacts.

Furthermore, a paradigm shift in the formulation of damage functions is necessary to adequately

capture the non-linearities in climate sensitivity to temperature [52]–[54], potential tipping points (such as

permafrost thaw, glacier and polar ice cap melting, and ecosystem collapse [55], [56]), and the escalating

risks of extreme climate events that remain insufficiently addressed, even in recent econometric analyses

[11]. This evolution requires moving from a deterministic framework to a probabilistic one, better reflecting

the structural uncertainties that dominate economic projections within IAMs.

It is also crucial to recognize that numerous other parameters can significantly impact the optimal

warming trajectory. The Nordhaus vs. Stern debate remains relevant today, with results still highly

sensitive to the choice of the discount rate, despite the profound policy implications at stake. The adoption

of a declining discount rate could offer a way forward in addressing this normative conflict [57].

Despite ongoing efforts to improve IAMs, certain criticisms remain compelling. Under uncertainty, it is

challenging to determine the appropriate functional forms or parameter values for catastrophic outcomes

[30], [58]. Pindyck argues that ”the damage functions used in most IAMs are completely made up, with

no theoretical or empirical foundation.” Even with significant advances in causal inference and data-driven

estimations, his critique may still be valid [59]. We can only assess damages based on past events, and our

understanding of potential impacts on the economy beyond +4°C is severely limited. It might indeed be
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preferable that we never have to discover these impacts empirically.

In this context, how can the use of these models for decision-making be justified when the results are

so heavily dependent on the initial assumptions? Should we rely on the possibility that these models are

robust enough to provide some directional guidance, or is it wiser to abandon the illusion of certainty?

When it comes to non-market damages and the degradation of public goods, including nature, can

they simply be integrated into a cost-benefit framework based on GDP? Rethinking how we account for

mitigation costs [60], disaggregating our indicators [61] and models to account for sectoral impacts, agent

interactions, and rigorous tracking of flows and stocks (including natural capital) could provide a potential

solution. By balancing precision and simplicity, such an approach could maintain the necessary rigor in

light of the climate challenges facing humankind.

Abandoning traditional cost-benefit approaches becomes even more compelling given that markets

appear unable to assign an appropriate value to the future [62]. Moreover, investment in renewable

energies still remains insufficient due to their low profitability in a competitive energy market [63].

In 1987, George E. P. Box wrote: ”Remember that all models are wrong; the practical question is how

wrong do they have to be to not be useful” [64]. Perhaps we should acknowledge that IAMs are too wrong

to be useful and to embrace the call of Stern, Stiglitz, and Taylor in striving to sustain life on Earth [65].
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A.1 Model - Indices

Symbol Name Model Name Short description

c country Countries included in the model

q quantile Index of income quantiles

rrice regionrice Regions defined by the RICE model

rwpp regionwpp Regions defined from the World Population Prospects database (UN)

t time Time index
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A.2 Model - Parameters

N.B. : $ = 2017 US dollars. pers. = person. yr = year.

Name Short description Unit Value

β1 Linear damage coefficient on temperature.

This parameter represents the direct impact

of the temperature anomaly on the economy

T−β2 0.0236

β1_KW [t, c] Linear damage coefficient on local tempera-

ture anomaly for Kalkuhl and Wenz based

damage function

T−1 —

β2 Power damage coefficient on temperature.

This parameter captures the non-linear ef-

fects of temperature anomalies on the econ-

omy

— 2

β2_KW [t, c] Quadratic damage coefficient on local tem-

perature anomaly for Kalkuhl and Wenz

based damage function

T−2 —

β_temp[c] Temperature scaling coefficients, which

translate global temperature anomalies into

country-level temperature anomalies

— —

η Inequality aversion. — 1.5 (by de-

fault)

σ[t, c] Emissions output ratio. This parameter is

used for modelling emissions intensity as a

function of economic activity

GtCO2/(106 $) —

θ2 Exponent of abatement cost function (DICE-

2023 value)

— 2.6

µ_input[t, c] Input mitigation rate, used with option 3

“country_abatement_rate”

% —
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Name Short description Unit Value

control_regime Switch for emissions control regime ; 1 =

“global_carbon_tax”, 2 = “country_car-

bon_tax”, 3 = “country_abatement_rate”

— 3 (by de-

fault)

daily_poverty_line Daily poverty line $/pers/day 2.15

damage_elasticity Income elasticity of climate damages (1 =

proportional to income)

— 0.85

depk[t,c] Depreciation rate on capital % —

elasticity Income elasticity with respect to cli-

mate damage, mitigation costs, etc.

It can either be damage_elasticity or

CO2_income_elasticity

— —

elasticity_intercept[t] Intercept term for estimating income elastic-

ity

— 3.22a

elasticity_slope[t] Slope term for estimating income elasticity — -0.2a

global_carbon_tax[t] Global carbon tax $/tCO2 —

global_recycle_share[c] Share of country revenues that are recycled

globally in the form of international transfers

(1 = 100%)

% 1 (by de-

fault)

global_temperature[t] =

temp_anomaly[t]

Global average surface temperature excess

(above pre-industrial [year 1750] level)

°C —

income_shares[c,q] An array of income shares by quantile (where

rows represent countries and columns repre-

sent quantiles)

— —

increase_value The annual tax increase value. By default,

it is equal to tax_start_value, which means

that the tax increases by its initial value each

year

$/tCO2 —

k0[c] Initial level of capital. Determines the start-

ing point for capital accumulation

106 $/yr —
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Name Short description Unit Value

l[t,c] Labor/population. This parameter repre-

sents either the population or the available

workforce for production of a given country

103 pers. —

list_llmic_flag[c] Equal to 1 if the country is on the list of low

and middle income countries, 0 otherwise

— —

list_risk_index[c] Risk index — —

local_temp_anomaly[t,c] Country-level average surface temperature

anomaly (above pre-industrial [year 1750]

level)

°C —

lost_revenue_share Portion of carbon tax revenue that is lost and

cannot be recycled (1 = 100% of revenue lost,

0 = no revenue lost)

% 0 (by de-

fault)

mapcrrice[c] Mapping from country index to RICE region

index

— 183 coun-

tries to 12

regions

mapcrwpp[c] Mapping from country index to UN WPP re-

gion index

— 183 coun-

tries to 20

regions

max_study_gdp Maximum value of GDP per capita observed

in elasticity studies

$/pers. 48892

min_study_gdp Minimum value of GDP per capita observed

in elasticity studies

$/pers. 647

nb_country Number of countries — 183

nb_quantile Number of quantiles — 10 (by de-

fault)

pbacktime[t] Backstop price from DICE 2023 $/tCO2 —

quantile_income

_shares[t,c,q]

Income shares of quantile — —
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Name Short description Unit Value

recycle_share[c,q] Share of carbon tax revenues recycled to each

quantile

— 1

nb_quantile
(by default)

reference_carbon_tax[t] Reference carbon tax $/tCO2 —

reference_country_index Reference country index — USA

s[t,c] Savings rate % —

share Capital’s share of production. This param-

eter is global and affects the distribution of

income between capital and labor

% 0.3

switch_dam

_abs_llmic_recycle

Boolean, carbon tax revenues are recycled

globally in proportion to absolute damage in

LLMICs

— 0 or 1

switch_dam

_rel_llmic_recycle

Boolean, carbon tax revenues are recy-

cled globally in proportion to population-

weighted relative damages in low- and

middle-income countries (LLMICs)

— 0 or 1

switch_global

_pc_recycle

Boolean, carbon tax revenues are recycled

globally on an equal per capita basis

— 0 or 1

switch_recycle Boolean for recycling carbon tax revenue — 0 or 1

switch_risk

_llmic_recycle

Boolean, carbon tax revenues are recycled ac-

cording to a population-weighted risk index

in LLMICs

— 0 or 1

switch_scope_recycle Boolean, carbon tax revenues are recycled at

national (0) or global (1) level

— 0 or 1

tax_start_value The initial value of the carbon tax $/tCO2 Depends on

the chosen

carbon tax

pathway

temp_anomaly[t] =

global_temperature[t]

Global average surface temperature excess

(above pre-industrial [year 1750] level)

°C —
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Name Short description Unit Value

tfp[t,c] Total factor productivity — —

year_model_end The end of the model. If it is less than

year_tax_end, the last tax value is repeated

up to this year

yr 2300 (by de-

fault)

year_step The step in years between two tax values yr 1 (by de-

fault)

year_tax_end The last year for which to calculate the tax yr 2200 (by de-

fault)

year_tax_start The first year of the tax increase yr 2020 (by de-

fault)

A.3 Model - Variables

Name Short description Unit

µ[t, c] GHG emissions mitigation rate %

µ_cons[t, c] µ parameter of the lognormal distribution of consump-

tion

—

σ_cons[t, c] σ parameter of the lognormal distribution of consump-

tion

—

θ1[t, c] Multiplicative parameter of abatement cost function.

Equal to ABATEFRAC at 100% mitigation

—

ABATECOST[t,c] Cost of emission reductions 106 $/yr

ABATEFRAC[t,c] Cost of emission reductions as a share of gross eco-

nomic output

%

aResults from the meta-regression computed by Budolfson et al. (2021) [21] based on study results to calculate

elasticity vs. ln gdp per capita relationship.
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Name Short description Unit

abatement_cost

_dist[t,c,q]

Share of the distribution of abatement costs per quan-

tile

—

C[t,c] Country consumption 106 $/yr

carbon_tax_dist[t,c,q] Shares of the distribution of CO2 tax burden per quan-

tile

—

cons_EDE_country[t,c] Consumption equivalent to equitably distributed well-

being in a given country

103 $/pers/yr

cons_EDE_global[t] Global consumption equivalent to equitably dis-

tributed well-being

103 $/pers/yr

cons_EDE_rwpp[t,rwpp] Consumption equivalent to equitably distributed well-

being for WPP regions

103 $/pers/yr

country_carbon_tax[t,c] CO2 tax rate $/tCO2

country_pc_dividend[t,c] Total fiscal dividends per person, including all inter-

national monetary transfers

103 $/pers/yr

country_pc_dividend

_domestic_transfers[t,c]

Fiscal dividends per person from domestic redistribu-

tion, i.e., within a country

103 $/pers/yr

country_pc_dividend

_global_transfers[t,c]

Tax dividends per person from international transfers 103 $/pers/yr

country_pc_dividend

_llmic[t,c]

Tax income per person in LLMIC 103 $/pers/yr

CPC[t,c] Country level consumption per capita 103 $/pers/yr

CPC_post[t,c] Country level consumption per capita after recycling 103 $/pers/yr

CPC_post_global[t] World consumption per capita after recycling 103 $/pers/yr

CPC_post_rwpp[t,rwpp] Regional per capita consumption after recycling 103 $/pers/yr

CPC_rwp[t,rwpp] Regional level consumption per capita 103 $/pers/yr

DAMFRAC[t,c] Country-level damages as a share of net GDP based

on global temperatures

%
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Name Short description Unit

damage_dist[t,c,q] Share of the distribution of climate damage per quan-

tile

—

E_gtco2[t,c] Country-level total GHG emissions 109 tCO2/yr

E_Global_gtco2[t] Global emissions (sum of all country emissions) 109 tCO2/yr

E_Global_gtco2

_rrice[t,rrice]

Regional GHG emissions for the regions defined in the

RICE model

109 tCO2/yr

E_Global_gtc[t] Global emissions in units of gigatonnes of carbon, giv-

ing compatible units with FAIR

109 tC/yr

GLOBAL_ABATEFRAC

_full_abatement[t]

Global ABATEFRAC[t] in case of full mitigation %

global_gini_cons[t] Gini index of world consumption —

global_poverty

_population_cons[t]

Number of people living in poverty in the world, based

on consumption

103 pers

global_revenue[t] Carbon tax revenue, derived from the total recycled

revenue of all countries

$/yr

global_pc_revenue[t] Carbon tax revenue per person, derived from the total

recycled revenue of all countries

103 $/pers/yr

gini_cons[t,c] Gini index of country consumption —

gini_cons_rwpp[t,rwpp] Gini index of regional consumption —

I[t,c] Investment 106 $/yr

K[t,c] Capital 106 $/yr

l_rwpp[t,rwpp] Regional population 103 pers.

llmic_population[t] Total population in low- and middle-income countries 103 pers.

LOCAL_

DAMFRAC_KW[t,c]

Country-level damages as a share of net GDP based

on local temperatures and on Kalkuhl & Wenz

%
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Name Short description Unit

local_temperature[t,c] Excess temperature at country level (above pre-

industrial [year 1750] level)

°C

pc_gdp[t,c] = Y_pc[t,c] Net GDP per capita after damages and mitigation

costs

$/pers/yr

poverty_population

_cons[t,c]

Number of people living in poverty in each country,

according to consumption

103 pers

poverty_population

_cons_rwpp[t,rwpp]

Number of people in poverty at regional level, based

on consumption

103 pers

poverty_rate_cons[t,c] Poverty rate in a country, according to consumption.

The poverty line is defined as $ 2.15 per capita per

day

%

qc_base[t,c,q] Consumption per quantile per capita before damage,

before abatement cost, before tax

103 $pers/yr

qc_post

_damage_abatement[t,c,q]

Consumption per quantile per capita after damage,

after abatement

103 $/pers/yr

qc_post_recycle[t,c,q] Consumption per quantile per capita after recycling

the carbon tax to each quantile

103 $/pers/yr

qc_post_tax[t,c,q] Consumption per quantile per capita after subtraction

of the carbon tax

103 $/pers/yr

qc_share[t,c,q] Proportion of consumption per quantile per capita %

qpop[t,c,q] Population per quantile 103 pers

revenue_recycled

_global_level[t]

Recycle a share global_recycle_share of

tax_revenue at global level

103 $/yr

tax_pc_revenue[t,c] Carbon tax revenue per capita from country emissions 103 $/pers/yr

tax_revenue[t,c] Carbon tax revenue for a given country $/yr

tax_values[t] Array containing the carbon tax values over time, until

the last year of tax defined

—
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Name Short description Unit

total_c_post_recycle[t,c] Total consumption per country after recycling 103 $/pers/yr

total_tax_pc_revenue[t] Total carbon tax revenue per person, sum of tax rev-

enues in all countries per person

103 $/pers/yr

total_tax_revenue[t] Total carbon tax revenue, sum of tax revenues in all

countries

$/yr

TRANSFRAC_dam

_abs_llmic[t,c]

Proportion of absolute damages (in net GDP loss) suf-

fered in the country in relation to global damage (dam-

age costs ratio)

%

TRANSFRAC_dam

_rel_llmic[t,c]

Proportion of damage suffered in the country in rela-

tion to global damage (share of population-weighted

global net output ratio)

%

TRANSFRAC_risk

_llmic[t,c]

Proportion of risk based on the population-weighted

2023 risk index in LLMIC

%

updated_quantile

_distribution[t,c,q]

An array which contains the updated quantile share

distribution for each country, considering the given in-

come elasticity

—

welfare_country[t,c] Welfare for countries —

welfare_global[t] Global welfare —

welfare_rwpp[t,rwpp] Welfare in a given WPP region —

YGROSS[t,c] Gross output 106 $/yr

YGROSS_global[t] Global gross output, represents the sum of all coun-

tries’ gross production

1012 $/yr

Y[t,c] Output net of damages and abatement costs 106 $/yr

Y_pc[t,c] = pc_gdp[t,c] Net GDP per capita after damages and mitigation

costs

$/pers/yr

Y_pc_rwpp[t,rwpp] Regional per capita output net of abatement and dam-

ages

$/pers/yr
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Shared Socio-economic Pathways

SSPs are a series of scenarios that outline alternative futures of societal development in the context of

climate change and its associated impacts. These scenarios encompass varying demographic, economic, and

social trends. SSPs complement the Representative Concentration Pathways (RCPs), which concentrate

on greenhouse gas emissions trajectories [66].

SSPs can be characterized by their projected directions for future development [67] or by the primary

policy challenges associated with implementing climate change adaptation and mitigation frameworks [68].

Table B.2 provides an overview of the five SSPs and their main characteristics.
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Projected
direction

Policy
challenges

Policy
orien-
tation
(growth)

Popu-
lation
dynamic

Expected
global
warming
by 2100

Inequal-
ities
dynamic

SSP1,
SSP1-
2.6

Sustain-
ability

Low chal-
lenges

Green
growth
(2%)

Lower
population
growth

1.8 [1.3 to
2.4] ℃

Fall in in-
equalities

SSP2,
SSP2-
4.5

Middle of
the Road

Inter-
mediate
challenges

No drastic
changes
(1.7%)

Moderate
demo-
graphic
growth

2.7 [2.1 to
3.5] ℃

Moderate
decrease in
inequalities

SSP3,
SSP3-
7.0

Regional
Rivalry

High chal-
lenges

Nation-
alistic
priorities
(0.7%)

High pop-
ulation
growth

3.6 [2.8 to
4.6] ℃

Rise in
inequalities
within- and
between-
countries

SSP4,
SSP4-
6.0

Inequality Adaptation
challenges

Deepening
global in-
equalities
(1.3%)

Divergent
demo-
graphic
trends

' 3 ℃ (No
data avail-
able)

Rise in in-
equalities

SSP5,
SSP5-
8.5

Fossil-
fueled
Develop-
ment

Mitigation
challenges

High eco-
nomic
growth
(2.6%)

Moderate
demo-
graphic
growth

4.4 [3.3 to
5.7] ℃

Fall in in-
equalities

Table B.2: SSPs main characteristics ([1], [48])
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List of LLMICs

C.1 Low income countries

Afghanistan, Burundi, Burkina Faso, Central African Republic, Democratic Republic of the Congo, Eritrea,

Ethiopia, Guinea, The Gambia, Guinea-Bissau, Liberia, Madagascar, Mali, Mozambique, Malawi, Niger,

The Democratic People’s Republic of Korea, Rwanda, Sudan, Sierra Leone, Somalia, South Sudan, Syrian

Arab Republic, Chad, Togo, Uganda, Yemen, Republic of Zambia.

C.2 Low-middle income countries

Angola, Benin, Bangladesh, Bolivia, Bhutan, Côte d’Ivoire, Cameroon, Republic of the Congo, Comoros,

Cabo Verde, Djibouti, Algeria, Arab Re- public of Egypt, Federal States of Micronesia, Ghana, Hon-

duras, Haiti, Indonesia, India, Islamic Republic of Iran, Kenya, Kyrgyz Republic, Cambodia, Kiribati, Lao

People’s Democratic Republic, Lebanon, Sri Lanka, Lesotho, Morocco, Myanmar, Mongolia, Mauritania,

Nigeria, Nicaragua, Nepal, Pakistan, Philippines, Papua New Guinea, West Bank and Gaza, Senegal,

Solomon Islands, El Salvador, São Tomé and Príncipe, Eswatini, Tajikistan, Timor-Leste, Tunisia, Tanza-

nia, Ukraine, Uzbekistan, Vietnam, Vanuatu, Samoa, Zimbabwe.
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